Narumi-Katayama and Multiplicative Zagreb Indices of Dutch Windmill Graph

Soner Nandappa D M.R. Rajesh Kanna*, R Pradeep Kumar

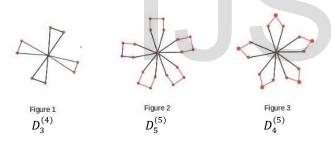
ABSTRACT - In this paper, we compute Narumi - Katayama index, First multiplicative Zagreb index, Modified multiplicative Zagreb index of Dutch windmill graph.

KEYWORDS - Narumi - Katayama index, First multiplicative Zagreb index, Modified multiplicative Zagreb index of Dutch windmill graph.

6, 7,8] and the references cited there in.

INTRODUCTION 1.

The Dutch windmill graph is denoted by $D_n^{(m)}$ and it is the graph obtained by taking m copies of the cycle C_n with a vertex in common. The Dutch windmill graph is also called as friendship graph if n = 3. i.e., Friendship graph is obtained by taking m copies of the cycle C_3 with a vertex in common. Dutch windmill graph $D_n^{(m)}$ contains (n - 1)m + 1 vertices and mnedges as shown in the figure 1 to 3.



All graphs considered in this paper are finite, connected, loop and without multiple edges. Let G = (V, E) be a graph with nvertices and *m* edges. The degree of a vertex $u \in V(G)$ is denoted by d_{μ} and is the number of vertices that are adjacent to u. The edge connected the vertices u and v is denoted by uv, Using these terminologies, certain topological indices are defined in the following manner.

Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariants. Narumi - Katayama index, First and second multiplicative Zagreb index, Modified multiplicative Zagreb index are the degree based molecular descriptor. For further results on NK(G), $\prod_1(G)$, $\prod_1^*(G)$, $\prod_2(G)$ see the papers [4, 5,

Soner Nandappa D

M.R. Rajesh Kanna

Post Graduate Department of Mathematics, Maharani's Science College for Women, Mysuru – 570005. India. mr.rajeshkanna@gmail.com R Pradeep Kumar

We encourage the reader to consult [1, 2, 3] for basics of Graph Theory, Chemical Graph Theory and molecular descriptors.

Definition 1.1. Let G = (V, E) be a graph and d_u degree of a vertex u then Narumi - Katayama index is defined as $NK(G) = \prod_{v} d_{v}(G)$. It was introduced by Narumi and Katayama in [7].

Definition 1.2. Let G = (V, E) be a graph and d_u degree of a vertex u then First multiplicative Zagreb index is defined as $\prod_{1}(G) = \prod_{v \in E(G)} [d_v(G)]^2$. The First multiplicative Zagreb index was introduced by Guttmann in [8].

Definition 1.3. Let G = (V, E) be a graph and d_u degree of a vertex u then Modified multiplicative Zagreb index index is defined as $\prod_{1}^{*}(G) = \prod_{uv \in E(G)} [d_u(G) + d_v(G)].$

Definition 1.4. Let G = (V, E) be a graph and d_{μ} degree of a vertex u then Second multiplicative Zagreb index is defined as $\prod_{2}(G) = \prod_{uv \in E(G)} [d_u(G)d_v(G)]$. The second multiplicative Zagreb index was introduced by Guttmann in [8].

2. Main results

Theorem 1. The Narumi - Katayama index of Dutch Windmill graph is $n2^{nm-m+1}$.

Proof. Dutch windmill graph $D_n^{(m)}$ contains (n - 1)m vertices of degree two and one vertex of degree 2n. Therefore

$$NK(G) = \prod_{v} d_{v}(G)$$

= $(2n)2^{(n-1)m}$
= $n2^{nm-m+1}$.

Department of studies in Mathematics, University of Mysore, Mysuru -570006. India. Email: ndsoner@yahoo.co.in

Research Scholar, Department of studies in Mathematics, University of LISER @ 2016 Mysore, Mysuru – 570006. India. pradeepr.mysore@gmail.com http://www.ijser.org

Theorem 2. The First multiplicative index of Dutch Windmill graph is $4^{nm-m+1}n^2$.

Proof.

 $\Pi_{\nu \in \nu(G)}[d_{\nu}(G)]^{2} = (2n)^{2} \times [(2)^{2}]^{(n-1)m}$ $= 4n^{2}4^{(n-1)m}$ $= 4^{nm-m+1}n^{2}$

Theorem 3. The Modified first multiplicative Zagreb index of Dutch Windmill graph is $\left[2^n \left(\frac{m+1}{2}\right)\right]^{2m}$

Proof: Consider the Dutch windmill graph $D_n^{(m)}$. We partition the edges of $D_n^{(m)}$ into edges of the type $E_{(d_u,d_v)}$ where uv is the edge. In $D_n^{(m)}$ we get edges of the type $E_{(2,2)}$ and $E_{(2m,2)}$. Edges of the type $E_{(2,2)}$ and $E_{(2m,2)}$ are colored in red and black respectively as shown in the figure [4]. The number of these types are given in the table 1.

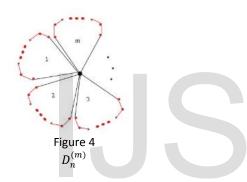


Table 1: Edge partition based on edges of end vertices of each edge.

Edges $E_{(d_u, d_v)}$	of	the	type	Number of Edges
$\frac{E(d_u, d_v)}{E_{(2,2)}}$				(n-2)m
	_	(2 <i>m</i> ,2)	2 <i>m</i>	

 $\prod_{1}^{*}(G) = \prod_{uv \in E(G)} [d_u(G) + d_v(G)]$

$$\prod_{1}^{*} (D_{n}^{m}) = \prod_{uv \in E(2,2)} [d_{u} (D_{n}^{m}) + d_{v} (D_{n}^{m})]$$
$$\prod_{uv \in E(2m,2)} [d_{u} (D_{n}^{m}) + d_{v} (D_{n}^{m})]$$

$$= (2+2)^{|E_{(2,2)}|} (2m+2)^{|E_{(2m,2)}|}$$

= $4^{(n-2)m} (2m+2)^{2m}$
= $4^{(n-2)m} (2)^{2m} (m+1)^{2m}$
= $2^{2nm-4m+2m} (m+1)^{2m}$
= $2^{2nm-2m} (m+1)^{2m}$
= $\left[2^n \left(\frac{m+1}{2}\right)\right]^{2m}$

Theorem 4. The second multiplicative index of Dutch Windmill graph is $4^{nm}m^{2m}$.

Proof.
$$\prod_{2}(G) = \prod_{uv \in E(G)} [d_{u}(G)d_{v}(G)]$$
$$\prod_{2} (D_{n}^{m}) = \prod_{uv \in E(2,2)} [d_{u}(D_{n}^{m})d_{v}(D_{n}^{m})]$$
$$\prod_{uv \in E(2m,2)} [d_{u}(D_{n}^{m})d_{v}(D_{n}^{m})]$$
$$= (2 \times 2)^{|E_{(2,2)}|} (2m \times 2)^{|E_{(2m,2)}|}$$
$$= 4^{(n-2)m} (4m)^{2m}$$
$$= 4^{nm-2m+2m} m^{2m}$$
$$= 4^{nm}m^{2m}.$$

REFERENCES

- [1] D.B. West. An Introduction to Graph Theory. Prentice-Hall. (1996).
- [2] N. Trinajstić. Chemical Graph Theory. CRC Press, Bo ca Raton, FL. (1992).
- [3] R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Wiley, Weinheim. (2000).
- [4] Mehdi Eliasia, Ali Iranmanesha,1, Ivan Gutmanb Multiplicative Versions of First Zagreb Index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217-230.
- [5] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005) 163–176.
- [6] T. Do'sli'c, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex– degree–based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613–626.
- [7] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984) 209– 214.
- [8] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13–19.